
	

Solid	Sands	B.V.	/	Postbus	7897	/	1008	AB	Amsterdam	/	The	Netherlands	
Phone	+	31	20	244	0199	/	KvK	61176249	

www.solidsands.nl	

	

Verification	of	Optimization	
Correctness	with	SuperTest	

	
	
If	you	think	advanced	compiler	optimizations	are	robust	and	well-tested,	you	are	wrong.	
Our	recent	experiments	with	optimization	testing	have	uncovered	errors	in	every	
compiler	technology	that	we	got	our	hands	on.	Our	conclusion	is	that	advanced	
optimization	testing	is	currently	an	underdeveloped	skill	of	compiler	developers	and	
that	action	is	required.	We	introduce	our	new	optimization	tests	in	SuperTest,	the	most	
advanced	compiler	test	suite	available.	

Compiler	optimizations	have	huge	economic	value.	Comparing	unoptimized	code	with	
optimized	code	can	demonstrate	a	fifteen-fold	increase	in	the	execution	speed	of	the	
generated	program	after	optimization.	That	is	a	large	factor,	but	it	is	not	uncommon	for	
advanced	loop	optimizations,	such	as	vectorization,	to	achieve	it.	As	for	the	economic	
value,	fifteen	times	greater	execution	efficiency	can	be	translated	into	a	slower	and	much	
cheaper	target	processor,	less	heat	dissipation,	a	more	compact	build,	and	
simultaneously,	a	reduction	in	(battery)	power	consumption	by	a	factor	of	15.	When	this	
happens	in	embedded	or	automotive	applications,	there	are	real	benefits	to	using	
compiler	optimizations.	

For	a	typical	compiler,	more	than	half	of	its	source	code	is	optimization	related.	That	is	
significant,	and	errors	can	occur	in	that	part	of	the	compiler	as	well	as	in	other	parts.	

1 “Optimizations Don’t Exist”
Over	the	past	year,	we	have	worked	on	improving	the	optimization	testing	capabilities	of	
SuperTest.	When	writing	any	test,	including	tests	for	SuperTest,	it	is	preferable	to	start	
from	the	language	specification.	However,	this	is	not	straightforward	for	optimizations.		
From	the	C/C++	language	definition	point	of	view,	optimizations	hardly	exist.	In	
C11:5.1.2.3,	it	says:	

The	semantic	descriptions	in	this	International	Standard	describe	the	behavior	
of	an	abstract	machine	in	which	issues	of	optimization	are	irrelevant.	

The	language	definition	specifies	the	behavior	of	every	particular	language	construct,	
but	it	does	not	specify	how	or	when	that	behavior	is	achieved.	Optimization	is	a	so-called	
‘non-functional’	requirement.	This	makes	it	hard,	if	not	impossible,	to	verify	
optimizations	against	a	specification.	

Our	belief,	backed	up	by	real-world	experience,	is	that	SuperTest	has	always	done	a	
pretty	good	job	of	optimization	testing.	Many	of	its	tests	are	specifically	designed	to	test	

	

Solid	Sands	B.V.	/	Postbus	7897	/	1008	AB	Amsterdam	/	The	Netherlands	
Phone	+	31	20	244	0199	/	KvK	61176249	

www.solidsands.nl	

compiler	optimizations.	For	example,	a	text	search	for	tail	recursion	in	the	SuperTest	
suites	immediately	reports	about	ten	tests.	That	does	not	include	tests	that	accidentally	
test	for	tail	recursion	or	were	not	documented	as	doing	so.	Because	of	the	nature	of	
compilers	as	a	pipeline	of	steps,	every	test	is	exposed	to	all	components	of	the	pipeline,	
including	all	optimization	stages.	This	means	that	the	chance	of	tests	unintentionally	
hitting	optimizations	is	high,	which	is	in	fact	what	we	see.	

The	weak	link	is	that	this	is	not	good	enough	to	meet	the	formal	requirements	of	
functional	safety	standards,	and	rightly	so.	These	standards	demand	a	less	‘accidental’	
approach,	which	requires	a	rigid	framework	to	link	tests	to	the	requirements	of	
optimization.	Providing	this	framework	is	what	we	set	out	to	do.	Our	goal	is	not	simply	
to	meet	the	requirements	of	functional	safety	standards,	but	also	to	actually	create	a	
high-quality	optimization	test	suite	that	has	wide	applicability.	

2 Inspiration from Benchmarks, Lessons Learned
To	get	inspiration	for	code	that	triggers	optimization,	we	turned	to	benchmarks	–	some	
of	them	well	known	in	the	field	of	performance	testing.	Not	only	are	there	(artificial)	
benchmarks	that	are	written	explicitly	to	trigger	optimizations,	but	compiler	developers	
have	also	worked	hard	to	improve	the	performance	of	benchmark	code	by	adding	
optimizations	to	their	compilers.	From	this	we	learned	a	number	of	lessons	that	can	be	
summarized	as	follows:		

Benchmarks	are	not	the	best	tests	of	correctness	of	compiler	optimizations.	
	

Lesson 1: Benchmarks do not always verify their results

The	number	one	metric	for	a	benchmark	is	how	fast	its	compiled	code	runs	on	the	target	
processor.	There	is	no	number	two	metric.	High	priority	is	not	always	given	to	verifying	
if	what	is	computed	is	also	correct.	So	how	do	we	know	that	optimizations	performed	on	
the	benchmark	are	performed	correctly?	For	some	graphics	benchmarks,	you	have	to	
review	the	generated	image	to	assess	correctness.	Clearly	that	approach	does	not	work	
in	a	continuous	integration	environment.	

Lesson 2: Benchmarks are not written to deal with different data models

In	the	development	of	SuperTest,	we	are	constantly	aware	of	the	many	different	data	
models	used	in	embedded	computing	platforms.	Computing	with	a	different	data	model	
(for	example,	using	24-bit	instead	of	32-bit	integers)	may	result	in	different,	potentially	
incorrect,	results.	This	must	be	taken	into	account	when	optimizing.	But	referring	back	
to	Lesson	1	above,	if	the	result	is	not	verified,	you	have	no	evidence	that	optimizations	
take	the	data	model	into	account.	

	

Solid	Sands	B.V.	/	Postbus	7897	/	1008	AB	Amsterdam	/	The	Netherlands	
Phone	+	31	20	244	0199	/	KvK	61176249	

www.solidsands.nl	

Lesson 3: Benchmarks may not be free of undefined behavior

Undefined	behavior	can	easily	happen	when	a	benchmark	is	compiled	for	a	smaller	data-
model	than	it	was	intended	for.	The	danger	of	this	is	that	some	compilers	use	the	
assumed	absence	of	undefined	behavior	as	a	property	that	can	be	optimized.	For	
example,	if	a	compiler	analysis	shows	that	a	branch	in	the	code	leads	to	undefined	
behavior,	perhaps	triggered	by	an	overflowing	signed	integer	computation,	the	compiler	
may	rightly	assume	that	the	branch	is	never	executed	and	remove	it.	This	may	not	have	
been	the	intention	of	the	benchmark,	but	it	does	make	it	run	faster.	

Lesson 4: Benchmarks do not execute all the generated code

Even	when	a	benchmark	verifies	that	its	computed	result	is	correct,	if	it	does	not	execute	
all	the	generated	code	there	is	no	evidence	that	the	transformation	that	created	the	non-
executed	code	is	correct.	This	is	not	simply	a	case	of	'dead-code'	in	the	benchmark	being	
optimized	away.	On	the	contrary,	when	compiled	without	optimization,	all	generated	
code	may	be	executed.	The	reason	for	not-executed	code	existing	after	optimization	is	
that	optimizing	transformations	often	duplicate	and	specialize	code.	As	part	of	this	
process,	a	much	more	complicated	control	flow	is	constructed	to	differentiate	between	
special	cases	and	make	them	faster.	If	every	special	case	is	not	present	in	the	benchmark,	
some	parts	of	the	generated	code	will	not	be	executed.	

It	should	now	be	clear	that	even	if	your	compiler	manages	to	optimize	a	benchmark	suite	
really	well,	there	is	no	guarantee	that	its	optimizations	are	correct.	

These	‘lessons	learned’	are	applied	in	our	construction	of	the	SuperTest	optimization	
test	suite.	We	have	done	as	much	as	we	can	to	make	sure	that	computed	results	are	
verified,	that	tests	are	applicable	to	the	data	model	the	suite	supports,	that	they	contain	
no	undefined	behavior,	and	that	they	execute	all	the	generated	code.	

3 Executing All the Generated Code (Lesson 4)
Not	all	benchmarks	suffer	from	these	deficiencies.	EEMBC’s	CoreMark®,	for	example,	
goes	through	great	lengths	to	verify	its	computed	result.	But	the	incomplete	execution	of	
all	the	generated	code	is	a	real	issue,	and	it	is	not	addressed	by	any	of	the	benchmarks	
that	we	know	of.		

Verifying	test	results,	working	with	the	right	data	model	and	having	no	undefined	
behavior	are	all	properties	of	the	test	source	code.	However,	executing	all	the	generated	
code	after	optimization	is	dependent	on	the	transformations	that	are	applied	by	the	
compiler.	We	cannot	know	these	beforehand,	and	although	we	cannot	guarantee	that	all	
generated	code	is	executed,	we	have	worked	hard	to	make	sure	that	this	property	is	true.	

	

Solid	Sands	B.V.	/	Postbus	7897	/	1008	AB	Amsterdam	/	The	Netherlands	
Phone	+	31	20	244	0199	/	KvK	61176249	

www.solidsands.nl	

To	analyze	generated	code	execution,	we	have	used	a	number	of	different	compilers	and	
performed	a	run-time	coverage	analysis	at	the	assembly	level.	In	effect,	we	have	
performed	assembly-level	MC/DC	analysis,	looking	both	at	structural	coverage	and	
branch	coverage.	Then,	for	all	possible	optimizations,	we	looked	at	the	code	
specialization	that	the	compiler	applied	and	analyzed	the	specific	inputs	that	are	needed	
to	hit	all	the	generated	specialized	code.	

For	example,	take	the	following	relatively	simple	loop:	

 int f(int n) {
 int total = 0;
 for (int i=0; i<n; i++){
 total += i & n;
 }
 }

This	loop	is	sufficiently	complex	that	the	compiler	does	not	apply	the	algebraic	analysis	
that	would	remove	the	loop	completely.	Instead,	the	loop	can	be	vectorized.	At	the	
source	code	level,	a	single	call	of	the	loop	with	a	value	of	n	different	from	zero	achieves	
full	structural	code	coverage.	Also,	the	single	branch	due	to	the	loop	condition	is	called	in	
both	ways	at	run-time,	achieving	full	branch	coverage.	

When	we	look	at	the	generated	assembly	code	at	a	high	optimization	level,	we	see	that	
the	code	has	expanded	significantly	and	contains	no	less	than	fifteen	conditional	
branches.	Calling	the	loop	with	n=999	(a	non-trivial	number	that	is	not	a	multiple	of	the	
loop-unroll	factor	or	the	vector	length)	results	in	about	80%	code	coverage	(reasonably	
good)	but	coverage	of	less	than	half	of	the	control	flow	edges	in	the	generated	code	(not	
good).	

To	achieve	maximal	code	and	branch	coverage,	the	optimized	code	has	to	be	called	with	
at	least	five	different	values	of	the	loop	value	n.	

One	interesting,	perhaps	surprising,	discovery	was	that	compilers	generate	redundant	
conditional	branches.	This	was	observed	in	multiple,	different,	compiler	technologies,	so	
it	is	not	merely	an	artifact	of	one	compiler.	It	happens	in	this	loop	too.	Redundant	
branches	recheck	a	condition	that	was	established	earlier	in	its	flow	of	control.	As	a	
result,	the	condition	always	has	the	same	value	and	the	redundant	conditional	branch	is	
always	taken	in	the	same	direction.	Full	branch	coverage	for	these	redundant	branches	
cannot	be	achieved!	

The	unwelcome	result	of	redundant	branches	is	that	maximal	code	and	branch	coverage	
is	less	than	full	code	and	branch	coverage.	Also,	the	redundant	branches	are	not	easy	to	
analyze,	so	understanding	when	maximal	coverage	is	not	equal	to	full	coverage	is	a	non-
trivial	and,	above	all,	time-consuming	exercise.	

Taking	all	of	this	into	account,	we	were	able	to	create	a	generalized	method	of	
constructing,	for	every	test,	a	range	of	test-cases	that	achieved	maximal	coverage	for	all	

	

Solid	Sands	B.V.	/	Postbus	7897	/	1008	AB	Amsterdam	/	The	Netherlands	
Phone	+	31	20	244	0199	/	KvK	61176249	

www.solidsands.nl	

the	compilers	we	looked	at.	Since	our	methods	are	robust	and	work	independently	of	a	
particular	compiler	technology,	we	believe	that	our	tests	and	test-cases	are	highly	likely	
to	achieve	maximal	coverage	for	other	compiler	technologies	as	well.	

4 Results
Using	our	old	and	new	optimization	tests,	we	have	found	optimization	errors	in	all	the	
compiler	technologies	we	have	analyzed	so	far.	This	does	not	mean	that	optimizations	
cannot	be	trusted	in	general,	but	it	does	suggest	that	it	pays	to	tread	carefully.	

Here	is	the	result	of	running	a	SuperTest	test	on	a	compiler	that	is	commonly	used	in	
embedded	systems:	

 s[0] = 42;
 (sp[0]) = -1; / *(sp[0]) is an alias of s[0] */
 if(s[0] == 42){ /* Incorrectly yields true */

This	error	is	the	result	of	an	incorrect	value	propagation,	from	the	first	statement	to	the	
third,	through	variable	s[0],	while	that	variable	was	modified	by	the	second	statement	
through	an	alias.	The	dangerous	aspect	of	this	compiler	error	is	that	it	is	due	to	an	
optimization	that	is	applied	without	any	of	the	optimization	options	being	given	to	the	
compiler.	So	even	if	you	think	that	no	optimization	takes	place,	it	still	happens.	This	is	OK	
as	far	as	the	language	definition	is	concerned,	but	many	developers	would	not	expect	it	
to	happen.	

Here	is	another	result	from	the	optimization	suite,	compiled	with	Intel's	ICC	compiler.	
This	compiler	is	well	regarded	and	known	for	its	high-performance	loop	optimizations,	
but,	as	shown	here,	it	is	not	perfect:	

 void s482(double *a, double *b, double *c, int len) {
 int i;
 for (i = INT_MIN; i < INT_MIN+len; i++) {
 a[i-INT_MIN] = b[i-INT_MIN] + c[i-INT_MIN];
 if (c[i-INT_MIN] > b[i-INT_MIN])
 break;
 }
 }

The	special	property	of	this	test	is	that	its	iterator	i	operates	close	to	the	lower	bound	of	
the	integer	domain,	something	that	the	optimizer	is	not	prepared	for.	As	a	result,	the	
program	crashes	at	run-time	with	a	segmentation	fault.	We	also	found	optimization	
errors	in	other	trusted	technologies	such	as	CLANG/LLVM	compilers,	GCC	compilers	and	
Microsoft's	compiler.	
	

	

Solid	Sands	B.V.	/	Postbus	7897	/	1008	AB	Amsterdam	/	The	Netherlands	
Phone	+	31	20	244	0199	/	KvK	61176249	

www.solidsands.nl	

5 Conclusion
The	most	important	conclusion	is	that	if	you	want	to	use	compiler	optimizations,	you	
must	know	the	weaknesses	of	your	compiler.	We	have	found	no	compiler	technology	
immune	to	optimization	errors.	Sometimes	the	errors	are	obscure	and	easy	to	avoid.	In	
other	cases,	they	are	so	severe	that	you	should	consider	not	using	a	specific	
optimization.	So	make	sure	that	you	have	a	test-suite	that	aims	to	verify	the	correctness	
of	optimizations	performed	by	the	compiler	–	and	not	only	a	benchmark	suite	aimed	at	
performance	analysis.	

If	you	need	to	qualify	the	use	of	optimizations	in	a	compiler	for	functional	safety	or	other	
mission-critical	requirements,	our	new	optimization	test	suite	provides	a	solid	basis.	
Optimization	is	not	a	functional	requirement	of	the	compiler,	and	every	compiler	
technology	has	its	own	specific	implementation	strategy	for	optimization.	Our	
optimization	test-suite,	in	conjunction	with	the	many	optimization-triggering	tests	in	the	
core	suites	of	SuperTest,	is	aimed	at	triggering	many,	if	not	all,	of	the	optimizations	in	
any	specific	compiler.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

(c)	Copyright	2019	by	Solid	Sands	B.V.,	Amsterdam,	the	Netherlands	
SuperTest™	is	a	trademark	of	Solid	Sands	B.V.,	Amsterdam,	The	Netherlands.	
All	other	trademarks	herein	are	the	property	of	their	respective	owners.	

